
Optimizing Multi-Core MPI Collectives with

SMARTMAP

Ron Brightwell and Kevin Pedretti

Scable System Software Department

Sandia National Laboratories

Albuquerque, New Mexico 81785–1319

{rbbrigh,ktpedre}@sandia.gov

Abstract—We recently enhanced a lightweight compute
node operating system with a simple page table mapping
strategy that allows parallel application processes within

a node to share effectively a single address space. This
strategy allows for each process to maintain a normal,
private address space, but also allows for processes to
behave like threads that can freely read and write the
memory of all processes on a node. In this paper, we
demonstrate the benefits of this approach for improving the
performance of MPI collective operations. In particular, we
describe a new multi-threaded MPI reduce algorithm that
outperforms existing approaches by as much as a factor of
seven on a quad-core processor.

I. INTRODUCTION

The increasing core count on commodity processors

used in high-performance computing (HPC) creates sev-

eral challenges for massively parallel systems and appli-

cations. One of the most significant challenges is deal-

ing with the decreasing amount of memory bandwidth

per core. The amount of effective memory bandwidth

available to each core is declining, and this problem is

exacerbated by the fact that the most popular parallel

programming model, message passing using the Message

Passing Interface (MPI), requires explicit copying of

data between application processes. As such, a range

of different approaches are being explored to address

this issue. Some application developers are turning to

mixed-mode programming, where MPI is used for com-

munication between nodes, and an alternative strategy

– typically multi-threading with pthreads or OpenMP

– is used for parallel computations within a node. At

the same time, system software developers are exploring

alternative strategies for intra-node data movement that

attempt to minimize the impact on memory bandwidth.

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

In this paper, we continue to explore the benefits of

a simple operating system page table mapping strategy

for multicore processors that allows the parallel pro-

cesses within a node to behave effectively as threads

within a single address space. We have called this

strategy SMARTMAP, Simple Mapping of Address Re-

gion Tables for Multicore-Aware Programming. With

SMARTMAP, each process maintains its own private

address space, but is also able to read and write eas-

ily the memory of the other processes on a node. In

previous work [1], we introduced SMARTMAP and

described its implementation in a lightweight operat-

ing system designed for massively parallel distributed

memory systems. Subsequently, we described an initial

prototype implementation of MPI point-to-point opera-

tions [2] as well as an initial implementation of MPI

collective operations [3] using SMARTMAP. While our

previous implementation of MPI collective operations

demonstrated significant performance improvement by

minimizing on-node memory-to-memory copies, we did

not fully exploit the available parallelism. This study

describes subsequent enhancements to two important

MPI collective operations, global reduction and global

exchange, further emphasizing the benefits that a simple

OS page table mapping strategy for multicore processors

can have on MPI performance.

The rest of this paper is organized as follows. The

next section provides background on the current ap-

proaches for using shared memory for intra-node MPI

communication. In Section III, we provide details on

SMARTMAP and its implementation in two different

lightweight compute node operating systems. Section IV

describes the implementation of several MPI collective

operations and how they have been optimized using

SMARTMAP, and Section V contains detailed perfor-

mance results and analysis. We conclude in Section VI

with a summary of this study and our plans for future



work with SMARTMAP.

II. BACKGROUND

In order to accelerate intra-node data transfer, memory

mapping is often used as a high-performance mechanism

for moving messages between processes [4]. Unfortu-

nately, such approaches to using page remapping are not

sufficient to support MPI semantics, and general-purpose

operating systems lack the appropriate mechanisms. For

MPI point-to-point operations, the sending process must

copy the message into a shared memory region and the

receiving process must copy it out – a minimum of two

copies must occur. Ideally, messages could be moved

directly between the two processes with just a single

copy. This would be possible if all processes operated

entirely out of the shared memory region, but this would

amount to the processes essentially becoming threads.

Furthermore, message passing programming interfaces

like MPI do not place any restriction on the location

of the source or destination address, allowing message

buffers to be located anywhere in an address space,

including the process’s data, heap and stack.

There are several limitations in using regions of shared

memory to support intra-node MPI [5], [6], [7]. First,

the MPI model doesn’t allow applications to allocate

memory out of a special shared region, so messages must

first be copied into shared memory by the sender and

then copied out of the shared region by the receiver.

This copy overhead can be a significant performance

issue. Typically there is a limitation on the amount of

shared memory that a process can allocate, so the MPI

implementation must make decisions about how to use

most effectively this memory in terms of how many

per-process messages to support relative to the size of

the contents of each message. The overhead of copying

messages using shared memory has led researchers to

explore alternative single-copy strategies for intra-node

MPI message passing.

One such strategy is to use the operating system to

perform the copy between separate address spaces [8].

In this method, the kernel maps the user buffer into

kernel space and does a single memory copy between

user space and kernel space. The drawback of this ap-

proach is that the overhead of trapping to the kernel and

manipulating memory maps can be expensive. Another

limitation is that all transfers must be serialized through

the operating system. As the number of cores on a node

increases, serialization and management of shared kernel

data structures for mapping is likely to be a significant

performance limitation.

Another strategy for optimizing intra-node transfers is

to use hardware assistance beyond the host processors.

The most common approach is to use an intelligent or

programmable network interface to perform the transfer.

Rather than sending a local message out to the network

and back, the network interface can simply use its DMA

engines to do a single copy between the communicat-

ing processes. The major drawback of this approach

is serialization through the network interface, which is

typically much slower than the host processor(s). Also,

large coherent shared memory machines typically have

hardware support for creating a global shared memory

environment. This hardware can also be used when

running distributed memory programs to map arbitrary

regions of memory to provide direct shared memory

access between processes. SGI’s NUMAlink hardware

is one such example [9]. The obvious drawback of this

approach is the additional cost of this hardware.

A comprehensive analysis of the different approaches

for intra-node MPI communication was presented

in [10]. More recently, a two-level protocol approach

that uses shared memory regions for small messages and

OS support for page remapping individual buffers for

large messages was proposed and evaluated [11]. There

has also been some recent work on optimizing MPI

collective operations using shared memory for multi-core

systems [12].

III. SMARTMAP

SMARTMAP allows for direct access shared memory

between the processes running on a multi-core processor.

This technique leverages many of the characteristics of

our lightweight kernel to achieve shared memory capa-

bility without the limitations of POSIX shared memory

mapping or the additional complexity of multi-threading.

SMARTMAP preserves the ability to run a single execu-

tion context in a separate address space, but also provides

the ability to access easily the address spaces of the other

execution contexts within the same parallel job on the

same node. The following provides a description of the

implementation of our strategy and its advantages over

existing approaches for intra-node data movement.

A. Catamount

Catamount [13] is a third-generation compute node

operating system developed by Sandia National Lab-

oratories with Cray, Inc., as part of the Red Storm

project [14]. Red Storm is the prototype for what has

become the commercially successful Cray XT line of

massively parallel processing systems. Catamount has

several unique features that are designed to optimize

performance and scalability specifically for a distributed

memory message passing-based parallel computing plat-

form.

2



One such important feature is memory management.

Unlike traditional full-featured operating systems, Cata-

mount does not support demand-paged virtual memory

and uses a linear mapping from virtual addresses to

physical pages of memory. This approach can potentially

have several advantages. For instance, there is no need

to register memory or “lock” memory pages involved

in network transfers to prevent the operating system

from unmapping or remapping pages. The mapping in

Catamount is done at process creation time and is never

changed during the life of a process.

SMARTMAP takes advantage of Catamount’s simple

memory management model, specifically the fact that

Catamount only uses a single entry in the top-level

page table mapping structure (PML4) on each X86-

64 (AMD Opteron or Intel EM64T) core. Each PML4

slot covers 39 bits of address space, or 512 GB of

memory. Normally, Catamount only uses the first en-

try covering physical addresses in the range 0x0 to

0x007FFFFFFFFF. The X86-64 architecture supports

a 48-bit address space, so there are 512 entries in the

PML4.

Each core writes the pointer to its PML4 table into an

array at core 0 when a new parallel job is started. Each

time the kernel enters the routine to run the user-level

process, it copies all of the PML4 entries from each core

into the local core. This allows every core on a node to

see every other core’s view of the virtual memory across

the node, at a fixed offset into its own virtual address

space.

Another feature of Catamount is that the mapping

of virtual addresses for the same executable image is

identical across all of the processes on all of the nodes.

The starting address of the data, stack, and heap is the

same. This means that the virtual address of a variable

with global scope is the same in every process. A “local”

virtual addresses can be converted to a “remote” virtual

address by simply flipping a few bits at the upper part

of the address. This makes it extremely easy for one

process to read and write the corresponding data in

another process’s address space running on a different

core of the same processor.

Catamount’s memory management design is much

simpler than a general-purpose OS like Linux. Linux

memory management is based on the principle that

processes execute in different address spaces and threads

execute in the same address space. Most architecture

ports, X86-64 included, maintain a unique set of address

translation structures (e.g., a page table tree on X86-

64) for each process and a single set for each group

of threads. Our mapping strategy operates differently in

that a process’s address space and associated translation

structures are neither fully-unique or fully-shared. For

example, our map on the X86-64 architecture maintains

a unique top-level page table (the PML4) for each

process; however, all processes share a common set of

leaves linked from this top-level table. Linux memory

management does not support this form of page-table

sharing, so each process must be given a replicated copy

of each shareable leaf. This results in more memory

being wasted on page tables (2 MB per GB of address

space on X86-64) and a larger cache footprint than

necessary. Modifications to Linux to support sharing

a single page table entry for shared memory mapped

regions have been proposed, but the changes have not

been accepted in the mainline kernel.

B. Limitations

SMARTMAP is currently limited to what the top-level

X86-64 page table supports – 511 processes (one slot is

needed for the local process) and 512 GB of memory

per process. However, this will likely be sufficient for

a typical compute node for the foreseeable future. Since

Catamount only runs on X86-64 processors, our mapping

strategy is currently limited to this processor family as

well. However, the concepts are generally applicable

to other architectures that support virtual memory. For

example, even though the PowerPC uses an inverted

page table scheme that is very different from X86-

64, the hardware’s support for segmentation can be

used to implement our strategy just as efficiently. On

other architectures with software-based virtual memory

support (i.e., a software managed translation look-aside

buffer), our strategy is straightforward to implement.

C. MPI

We have modified the Open MPI implementation to

make use of SMARTMAP. We chose Open MPI because

it is the only open-source implementation that supports

using shared memory for intra-node transfers that also

has support for the Cray XT. We have added point-

to-point and collective modules to Open MPI that use

SMARTMAP directly. SMARTMAP is also able to em-

ulate POSIX shared memory regions, which allows for

using the shared memory modules in Open MPI as well.

In previous work [2], we described the implementation

of these modules and showed the performance benefit

that SMARTMAP provides. The Open MPI collective

modules allow for implementing collective operations

using MPI point-to-point operations or directly using an

alternative transport.

3



IV. SMARTMAP COLLECTIVE OPTIMIZATIONS

In this section, we describe how we have optimized

several MPI collective operations using SMARTMAP. In

contrast to point-to-point operations, collective commu-

nication involves a group of processes that all must par-

ticipate and cooperate to complete the operation. Broad-

cast and barrier are two common collective operations.

MPI also defines several other collective operations,

including a global reduction operation (MPI Reduce),

a complete global reduction (MPI Allreduce) and a

complete exchange operation (MPI Alltoall). We begin

by describing the basic infrastructure for implementing

collective operations using SMARTMAP.

We have implemented a collective module in Open

MPI that is enabled when all of the cooperating pro-

cesses are running on the same node. Each process

defines the following globally-scoped data structure,

placing it at the same virtual address in each process’s

address space.

typedef struct {

int counter;

int context;

void *send_buff;

void *recv_buff;

int turn;

int finished;

} coll_info_t;

coll_info_t coll_info;

The first two elements, counter and context,

are specific to the MPI communicator involved in the

collective operation. Since MPI collective operations are

blocking, a process can be participating in at most one

collective at a time. The communicator’s counter is

incremented each time a collective operation is started

and the context is used to identify the specific com-

municator being used. This prevents sub-communicators

in overlapping collective operations from interfering with

each other.

MPI collectives fall into two categories: those that

are rooted and those that are not. In a rooted collective

operation, all processes participate, but only one process

receives the result. In a non-rooted collective, all pro-

cesses participate and all processes receive the result.

When a process enters a rooted collective operation,

it first determines whether it is the root. If it is the

root process, it initializes the other elements in the

coll_info_t structure with the appropriate informa-

tion and then sets counter and context to signal

that the root has joined the collective. If a process is

not the root, it determines the address of the collective

info structure at the root and spins waiting for the root to

enter the collective operation. Some collective operations

require that each process initialize its local collective info

structure with local data before synchronizing with the

root. This is true in the case of the threaded MPI Reduce

operation described below.

A. Reduce

The MPI Reduce function combines the elements pro-

vided by each process using an operation and returns the

combined values across all processes to the root process.

The routine must be called by all group members with

input buffers of the same length and with elements of

the same type. The root must call the operation with an

output buffer that is the same length and same type as

the input buffer. MPI has several predefined operations

for reductions, such as sum, product, minimum and

maximum, and also allows user-defined operations.

Our initial implementation of reduce took advantage

of the global address space capability of the OS to

eliminate any extra memory-to-memory copies. The re-

duce operation was performed in-place using the root

process’s receive buffer directly. The following describes

this initial implementation.

To begin the reduce, the root process first copies

the send buffer to the receive buffer, initializes the

finished value to one, and initializes the turn value

to zero. It sets the context and counter values,

and then proceeds as the non-root processes do. A non-

root process reads the root’s receive buffer address and

converts it to a remote address in the local process’s

address space. It then waits for the turn value to be

equal to its rank. Once this occurs, the process performs

the reduce operation using its local send buffer and

the root’s receive buffer. When the reduce operation is

complete, it atomically increments the turn value to

let the next rank proceed, and atomically increments

the finished value to indicate that it is done. When

the root process’ turn is up, it simply increments the

counter to let the following rank proceed. The root then

waits for its finished value to reach the size of the

communicator, at which point the root’s receive buffer

now contains the correct result. Once a non-root process

has completed its part of the reduction, it can exit the

operation.

We have since optimized the reduction operation to be

“threaded”. Instead of serializing access to the receive

buffer by each process, we have implemented a new

algorithm that divides up the work evenly among all of

the processes and lets them proceed in parallel, acting

as threads rather than processes.

In this new algorithm, each process fills in its lo-

cal send_buff and recv_buff information in the

collective info structure and initializes finished to

4



zero. Each process then determines an offset and length

based on its rank. On a quad-core processor, for example,

each process is responsible for processing a quarter of

the data. When each process has finished initializing its

local collective info structure, it atomically increments

the turn counter at the root. All process then wait for

the turn counter at the root to be equal to the number

of processes participating in the collective. Each process

then loops over all of the ranks, converting the send

buffer address of each rank to a remote address and

performing the operation on their chunk of the data at

the root. For example, if the rank zero process is the

root, it copies a piece of the send buffer into the receive

buffer and then proceeds to perform the reduce operation

using the remaining rank’s send buffers. It converts the

address of rank one’s send buffer to a remote address

and then performs the reduce operation on its piece of

the receive buffer. It continues by converting rank two’s

send buffer to a remote address and so on. After each

step, it atomically increments the finished counter in

the corresponding rank’s collective info structure. Once

it has processed its chunk for every rank, the process

waits for its local finished counter to be equal to the

number of participating processes so that it knows it is

safe to leave the reduce function.

One limitation of this algorithm is that it does not

support operations where the local rank is part of the

computation. For example, MPI has two predefined op-

erations, MPI MAX LOC and MPI MIN LOC, that not

only return the arithmetic result, but also return the rank

of the process containing the maximum or minimum

value. Since the process performing the computation may

not be the actual process that contains the value, we use

the serial algorithm for these operators and for any user-

defined operator.

B. Broadcast

For the broadcast operation, the root process again

initializes the finished value to one and sets the

send_buff to the location of the user buffer. It

then waits for the other processes to increment the

finished value. When non-root processes enter the

collective operation, they read the send_buff value in

the root process’s address space, convert it to a remote

address, and then copy the data directly from the source

buffer to the destination buffer in its address space. When

the copy is complete, the process atomically increments

the finished value.

C. Allreduce

Semantically, an allreduce operation is simply a re-

duce followed by a broadcast so that all processes

receive the result rather than just the root process.

The SMARTMAP implementation simply calls the

SMARTMAP reduce and broadcast functions directly to

implement allreduce.

D. Alltoall

For the MPI Alltoall operation, each process sends a

distinct set of data to every other node. The jth block

sent from process i is received by process j at the ith

block of its receive buffer. The routine must be called

by all group members with input and output buffers of

the same length and same type.

The implementation of this algorithm is more straight-

forward than the reduce operation. As with the reduce,

each process fills in its local collective info structure

appropriately and waits for all of the other processes

to enter the collective. After all of the processes have

arrived, each process loops through all of the ranks of

the participating processes and copies its piece of its

send buffer directly into the corresponding piece at the

root.

V. PERFORMANCE

A. Test Environment

The platform used to gather our performance results

is a Red Storm development system that contains 44

2.2 GHz quad-core Opterons. The compute nodes were

running Catamount version 2.0.41 which has been en-

hanced with SMARTMAP. Our changes to Open MPI

were performed on the head of the development tree.

We used the Intel MPI Benchmark suite, version 2.3 to

measure performance.

B. Intra-node Collectives

Figure 1(a) shows the performance of MPI Reduce

on a single quad-core processor for increasing mes-

sage sizes. It compares the implementation layered

on MPI point-to-point operations using SMARTMAP-

emulated POSIX shared memory (Shared Memory) and

SMARTMAP point-to-point operations (SMARTMAP),

the original serial direct SMARTMAP implementa-

tion (SMARTMAP Serial) and the new parallel direct

SMARTMAP implementation (SMARTMAP Parallel).

The parallel algorithm is not active until the buffer is

at least 1024 bytes, so the SMARTMAP direct imple-

mentation defaults to the serial algorithm.

From the graph, we can see that the serial and par-

allel algorithms have identical performance up to 1024

bytes, at which point the parallel algorithm significantly

outperforms the other approaches. The implementation

layered on SMARTMAP point-to-point (SMARTMAP)

starts out poorly because the data transfer is synchronous

5



 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

0

100

200

300

400

500

600

700

T
im

e
 (

M
ic

ro
s
e
c
o
n
d
s
)

%
 I
m

p
ro

v
e
m

e
n
t 
(S

M
A

R
T

M
A

P
 P

a
ra

lle
l 
v
s
. 
S

h
a
re

d
 M

e
m

o
ry

)

Message Size (Bytes)

Shared Memory
SMARTMAP

SMARTMAP Collective - Serial
SMARTMAP Collective - Parallel

% Improvement

(a) Reduce

 0.1

 1

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
 (

M
ic

ro
s
e
c
o
n
d
s
)

%
 I
m

p
ro

v
e
m

e
n
t 
(S

M
A

R
T

M
A

P
 P

a
ra

lle
l 
v
s
. 
S

h
a
re

d
 M

e
m

o
ry

)

Message Size (Bytes)

Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(b) Broadcast

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

0

100

200

300

T
im

e
 (

M
ic

ro
s
e
c
o
n
d
s
)

%
 I
m

p
ro

v
e
m

e
n
t 
(S

M
A

R
T

M
A

P
 C

o
lle

c
ti
v
e
 v

s
. 
S

h
a
re

d
 M

e
m

o
ry

)

Message Size (Bytes)

Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(c) Allreduce

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

0

100

200

300

400

500

600

T
im

e
 (

M
ic

ro
s
e
c
o
n
d
s
)

%
 I
m

p
ro

v
e
m

e
n
t 
(S

M
A

R
T

M
A

P
 C

o
lle

c
ti
v
e
 v

s
. 
S

h
a
re

d
 M

e
m

o
ry

)

Message Size (Bytes)

Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(d) Alltoall

Fig. 1: Quad-core MPI collective performance

– a message is not delivered until the receiver has

requested it. In contrast, the shared memory imple-

mentation (Shared Memory) is asynchronous – message

delivery is complete at the sender as soon as the message

is copied into shared memory. Copying short messages

is a win up to about 1024 bytes, where the overhead

of two copies becomes significant and the single-copy

approach of SMARTMAP is faster.

We have also plotted the percentage of improvement

that the SMARTMAP parallel algorithm has over the

layered shared memory approach in Figure 1(a). At

a message size of 32 KB, the SMARTMAP parallel

approach is an improvement over the shared memory

approach of more than 700%.

Figure 1(b) shows the performance of MPI Bcast on a

single quad-core processor for increasing message sizes.

The SMARTMAP collective module shows a significant

performance increase over both of the layered imple-

mentations. At the 8 KB message size, SMARTMAP is

nearly 10x faster.

Figure 1(c) shows the performance of the

MPI Allreduce operation on a single quad-core

processor. The SMARTMAP collective module again

shows a significant performance increase of 2-3x over

the shared memory implementation for messages from

1 KB to nearly 1 MB.

Figure 1(d) shows the performance of Alltoall for

layered shared memory (Shared Memory), layered

SMARTMAP (SMARTMAP), and direct SMARTMAP

(SMARTMAP Collective). We can see that the

SMARTMAP collective module significantly outper-

forms the others for all message sizes. We can also see

that the asynchronous behavior of the shared memory

implementation again has an advantage out to a size

6



of a few hundred bytes, at which point the single-copy

strategy of the SMARTMAP point-to-point module has

better performance. At medium message sizes, the ad-

vantage of the single-copy strategies using SMARTMAP

is clearly evident. From message sizes of 4 KB to 128

KB, the SMARTMAP collective is more than a 500%

improvement over using shared memory.

C. Hierarchical Collectives

Since we are mostly concerned with parallel appli-

cation performance at large scale, we are interested in

whether the optimization of on-node collective opera-

tions leads to a performance increase at larger scales. The

Open MPI implementation contains a hierarchical collec-

tive module that accounts for the locality of the processes

involved in the operation. It breaks the collective oper-

ation down into on-node and off-node components. For

example, a broadcast operation is implemented by first

sending the data to a local leader process on each node

using a network transport and then broadcasting the data

among the processes within a node.

We have modified the Open MPI hierarchical collec-

tive module to be able to use the SMARTMAP collective

module for intra-node operations. Figure V-C compares

the performance of the hierarchical collective imple-

mentations of reduce, broadcast, and allreduce using

SMARTMAP and shared memory on 128 processes (32

quad-core processors). Currently there is no hierarchical

implementation of alltoall.

Figure V-C(a) shows the performance of the hierarchi-

cal reduce operation. The SMARTMAP collective mod-

ule is able to outperform the baseline shared memory

implementation for nearly all messages sizes, peaking

at almost a 30% improvement for 2 MB messages.

Figure V-C(b) shows the performance of the hierarchical

broadcast operation. SMARTMAP again achieves better

performance than the shared memory baseline getting

a 5-20% performance increase for messages from 4-512

KB. Finally, Figure V-C(c) shows the performance of the

hierarchical allreduce. As expected, SMARTMAP shows

a similar level of performance increase beyond shared

memory for this operation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have described SMARTMAP, a

simple page table mapping strategy for multicore pro-

cessors that provides the ability for parallel application

processes within a node to read and write easily each

others’ memory. We have implemented SMARTMAP

in two lightweight compute node operating systems

designed for massively parallel distributed memory sys-

tems. We described how SMARTMAP can be used

to implement MPI collective communication operations

more efficiently than traditional POSX shared memory

approaches. SMARTMAP not only provides the ability

to do single-copy MPI message within a node, but also

allows for “threading” a collective reduction operation

to achieve an even greater level of performance. We

presented a performance comparison using a well-known

MPI communication benchmark that demonstrates the

advantage of the SMARTMAP approach for several

collective operations. We have also shown that the intra-

node optimization provided by SMARTMAP translates

to a performance increase for hierarchical collective

operations when using up to 32 quad-core nodes.

For future work, we are planning to do an in-depth

analysis of the performance benefit of SMARTMAP-

enabled MPI for real applications at scale. We are in

the process of obtaining dual-socket quad-core boards

from Cray to explore the scalability of SMARTMAP

on an eight-core system. We expect the performance

improvements offered by SMARTMAP to be even more

significant as core count increases.

We are exploring more ways to exploit the

SMARTMAP capability within a lightweight kernel be-

yond MPI. SMARTMAP is also a natural fit for im-

plementation of the Partitioned Global Address Space

(PGAS) Model. The implementations of Unified Paral-

lel C, Co-Array Fortran, and Global Arrays could be

enhanced to leverage SMARTMAP capabilities.

We are also exploring ways for applications to use the

SMARTMAP capability directly, through library inter-

faces that allow processes to do direct remote loads and

stores. We currently have MPI applications that are con-

ducive to recoding pieces of them to use shared-memory

style communications. The advantage of SMARTMAP

for this is that we can avoid the memory copy overhead

of using MPI and also avoid the complexity of mixing

MPI with threads or OpenMP compiler directives.

REFERENCES

[1] R. Brightwell, “Lightweight kernel support for direct shared
memory access on a multi-core processor,” in Proceedings of

the First Workshop on Managed Many-Core Systems, June 2008.

[2] ——, “A prototype implementation of MPI for SMARTMAP,”
in Proceedings of the 15th European PVM/MPI Users’ Group

Conference, September 2008.

[3] R. Brightwell, T. Hudson, and K. Pedretti, “SMARTMAP: Oper-
ating system support for efficient data sharing among processes
on a multi-core processor,” in Proceedings of the International

Conference for High Performance Computing, Networking, Stor-

age, and Analysis (SC’08), November 2008.

[4] P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth
cross-domain transfer facility,” ACM SIGOPS Operating Systems

Review, vol. 27, no. 5, pp. 189–202, December 1993.

7



 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
-10

 0

 10

 20

 30

 40

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

%
 I

m
p

ro
v
e

m
e

n
t 

(B
a

s
e

lin
e

 v
s
. 

S
M

A
R

T
M

A
P

)

Message Size (Bytes)

Baseline
SMARTMAP

% Improvement

(a) Reduce

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
-10

 0

 10

 20

 30

 40

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

%
 I

m
p

ro
v
e

m
e

n
t 

(B
a

s
e

lin
e

 v
s
. 

S
M

A
R

T
M

A
P

)

Message Size (Bytes)

Baseline
SMARTMAP

% Improvement

(b) Broadcast

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
-10

 0

 10

 20

 30

 40

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

%
 I

m
p

ro
v
e

m
e

n
t 

(B
a

s
e

lin
e

 v
s
. 

S
M

A
R

T
M

A
P

)
Message Size (Bytes)

Baseline
SMARTMAP

% Improvement

(c) Allreduce

Fig. 2: Hierarchical MPI collective performance

[5] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and
evaluation of shared-memory communication and synchroniza-
tion operations in MPICH2 using the Nemesis communication
subsystem,” Parallel Computing, vol. 33, no. 9, pp. 634–644,
September 2007.

[6] ——, “Implementation and shared-memory evaluation of
MPICH2 over the Nemesis communication subsystem,” in Pro-

ceedings of the 2006 European PVM/MPI Users’ Group Meeting,
September 2006.

[7] ——, “Design and evaluation of Nemesis, a scalable, low-latency,
message-passing communication subsystem,” in Proceedings of

the 2006 International Symposium on Cluster Computing and the

Grid, May 2006.
[8] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “Limic: Support

for high-performance MPI intra-node communication on Linux,”
in Proceedings of the 2005 Cluster International Conference on

Parallel Processing, June 2005.
[9] K. Feind and K. McMahon, “An ultrahigh performance MPI

implementation on SGI ccNUMA Altix systems,” in Proceedings

of the SGI Users’ Group Technical Conference, June 2006.

[10] D. Buntinas, G. Mercier, and W. Gropp, “Data transfers between
processes in an smp system: Performance study and application
to mpi,” in Proceedings of the 2006 International Conference on

Parallel Processing, August 2006.
[11] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda, “Designing an effi-

cient kernel-level and user-level hybrid approach for MPI intra-
node communication on multi-core systems,” in Proceedings of

the International Conference on Parallel Processing, September
2008.

[12] R. L. Graham and G. Shipman, “MPI support for multi-core
architectures: Optimized shared memory collectives,” in Proceed-

ings of the 15th European PVM/MPI Users’ Group Conference,
September 2008.

[13] S. M. Kelly and R. Brightwell, “Software architecture of the light
weight kernel, Catamount,” in Proceedings of the 2005 Cray User

Group Annual Technical Conference, May 2005.
[14] W. J. Camp and J. L. Tomkins, “Thor’s hammer: The first

version of the Red Storm MPP architecture,” in In Proceedings of

the SC 2002 Conference on High Performance Networking and

Computing, Baltimore, MD, November 2002.

8


